2025年06月24日
一、结构元素和锚点
数学形态学中最基本的概念是结构元素。结构元素可以简单地定义为像素的组合(下图的黄色正方形),在对应的像素上定义了一个原点(也称锚点)。
2025年06月24日
在阅读此文前,麻烦您点击一下“关注”,方便您进行讨论和分享,给您带来不一样的参与感,感谢您的支持。
文| 晓山青
编辑| 晓山青
2025年06月24日
简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正。本文首先分别介绍logistic函数和softmax函数的定义和应用,然后针对两者的联系和区别进行了总结。
引用wiki百科的定义:
A logistic function or logistic curve is a common "S" shape (sigmoid curve).
2025年06月24日
随着智能交通系统和无人驾驶技术的快速发展,交通标志识别系统成为智能驾驶系统的重要组成部分。传统的交通标志识别方法主要依赖于人工检查和识别,存在效率低下、易受主观因素影响等问题。因此,基于深度学习的交通标志识别技术应运而生,旨在提高识别的准确性和效率。
2025年06月24日
要坚持一件事情,还是得看兴趣,平时除了上班就是看看网络上的技术资料。接着上一篇继续讲解基础名词。
池化层:
对输入的特征图进行压缩,一方面使特征图变小,简化网络计算复杂度;一方面进行特征压缩,提取主要特征,如下:
池化操作一般有两种,一种是Avy Pooling,一种是max Pooling,如下:
2025年06月24日
softmax ,说人话,就是从一堆数字中,找出一个最大值,就是找 max。
2025年06月24日
一种极具毁灭性的舍入误差是下溢(underflow)。当接近零的数被四舍五入为零时发生下溢。另一个极具破坏力的数值错误形式是上溢(overflow)。当大量级的数被近似为 ∞ 或 -∞ 时发生上溢。进一步的运算通常会导致这些无限值变为非数字。必须对上溢和下溢进行数值稳定的一个例子是softmax 函数(softmax function)。softmax 函数经常用于预测与 Multinoulli 分布相关联的概率,定义为
softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!
2025年06月24日
撰文 | 郭冉
Softmax操作是深度学习模型中最常用的操作之一。在深度学习的分类任务中,网络最后的分类器往往是Softmax + CrossEntropy的组合: