来源:Deephub Imba
2025年06月09日
大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣]
构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。 选择正确的验证指标就像选择一副水晶球:它使我们能够以清晰的视野看到模型的性能。 在本指南中,我们将探讨分类和回归的基本指标和有效评估模型的知识。 学习何时使用每个指标、优点和缺点以及如何在 Python 中实现它们。
2025年06月09日
构建基于音频内容分析的智能推荐平台,通过用户输入音频(哼唱 / 节选 / 演奏)的特征提取与分析,实现本地音乐库的相似度匹配与个性化推荐。系统采用模块化设计,支持多格式音频处理、多维特征提取及高效匹配,提供精准推荐服务。
2025年06月09日
机器学习模型常常需要大量数据,但它们如何与实时新数据协同工作也同样关键。交叉验证是一种通过将数据集分成若干部分、在部分数据上训练模型、在其余数据上测试模型的方法,用来检验模型的表现。这有助于发现过拟合或欠拟合的问题,并预测模型在真实场景中的效果。
2025年06月09日
主成分分析是提高机器学习算法处理大量数据和特征的性能的最常用方法之一。然而,有时PCA可能太复杂,太技术化,甚至太乏味,无法正确理解基本原理,因此,我决定写这篇文章,以实际的方式阐明每一步,并易于初学者理解。
首先我们需要更好地理解为什么需要在机器学习中使用PCA:
2025年06月09日
python的numpy库的mean()函数,用于计算沿指定轴(一个轴或多个轴)的算术平均值。
2025年06月09日
作者:Alon Agmon
编译:ronghuaiyang
正文共:5411 字 6 图
预计阅读时间:16 分钟
在实际业务场景中,可能只会收到正反馈,所以反映到数据上,就只有正样本,另外就是大量的没有标记的样本,那么如何给这些没有标记的样本打上标签呢?