醋醋百科网

Good Luck To You!

工业AI | 如何在焊接机器人进行设备预测性维护?

预测性维护是工业大数据结合人工智能方向的一个重要应用场景,针对设备的故障和失效问题,实现从被动的故障维护到

cvpr 2024|自适应多峰交叉熵损失在立体匹配中的应用


Adaptive Multi-Modal Cross-Entropy Loss for Stereo Matching


研究背景

10分钟掌握异常检测

异常检测(也称为离群点检测)是检测异常实例的任务,异常实例与常规实例非常不同。这些实例称为异常或离群值,而正常实例称为内部值。

无监督学习的12个最重要的算法介绍及其用例总结

无监督学习(Unsupervised Learning)是和监督学习相对的另一种主流机器学习的方法,无监督学习是没有任何的数据标注只有数据本身。

无监督学习算法有几种类型,以下是其中最重要的12种:

1、聚类算法根据相似性将数据点分组成簇

k-means聚类是一种流行的聚类算法,它将数据划分为k组。

2、降维算法降低了数据的维数,使其更容易可视化和处理

主成分分析(PCA)是一种降维算法,将数据投影到低维空间,PCA可以用来将数据降维到其最重要的特征。

大数据:R数据挖掘分析常用包和函数 (收藏)

1、聚类

常用的包: fpc,cluster,pvclust,mclust

基于划分的方法: kmeans, pam, pamk, clara

基于层次的方法: hclust, pvclust, agnes, diana

基于模型的方法: mclust

基于密度的方法: dbscan

基于画图的方法: plotcluster, plot.hclust

基于验证的方法: cluster.stats

五大实用技巧:将混乱的真实数据转化为可靠分析基础

在实际工作中,数据往往杂乱无章、不完整且不一致,仅靠简单的数据清洗方法很难彻底解决问题。有经验的数据专业人士都知道,真正高效的数据清洗远不止删除几个空值或去除重复行那么简单。

DBSCAN聚类算法的理解与应用

在前面的文章中,我们讲了KNN算法的原理与简单应用,KNN一种有监督学习的分类算法,也就是说该算法首先需要训练数据来进行学习之后才能对数据进行分类。在本文中我们讲到的DBSCAN聚类算法,也属于一种数据分类算法,只不过该算法不需要任何训练数据就能对数据进行分类,因此该算法属于无监督的数据分类算法。本文中我们首先讲一下该算法的原理,然后举一个例子来说明该算法的应用。

1. DBSCAN算法原理

首先介绍该算法的主要概念与参数:

未知簇数量的无监督聚类算法

技术背景

在机器学习领域,无监督聚类是一种重要的数据分析技术,它能够将数据集中相似的数据点划分为不同的簇。然而,在实际应用中,我们往往并不知道数据集中具体存在多少个簇。例如,给定一组三维向量,需要根据欧几里得距离将它们聚类,使得同一簇内任意两个向量之间的欧几里得距离小于某个阈值

机器学习聚类算法总结

聚类分析是机器学习中的一种无监督学习方法,旨在将数据划分为具有相似特征的组(簇)。以下是常见聚类算法的总结及其关键要点:

1. K-means算法

  • 原理:基于质心,通过迭代优化将数据划分为K个簇。
  • 步骤

医疗数据中离群值对医院运营管理的影响分析

作者/张北(医院管理咨询师)

<< 1 2 > >>
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
最新留言