在这篇文章中,我将讨论用于目标检测任务的 Single Shot Multi-box Detector。 该算法属于一次性分类器系列,因此它的速度很快,非常适合嵌入到实时应用程序中。 SSD的关键特征之一是它能够预测不同大小的目标,并且为现在很多算法提供了基本的思路。 我们从讨论算法的网络架构开始这篇文章,然后我们将深入研究数据增强、锚框和损失函数。
模型架构
SSD 算法已经在各种预训练算法上进行了训练,如 ResNet50、ResNet101、ResNet152、MobileNet、EfficientNet 和 VGG16。 但在本文中,我们将讨论在 SSD [1] 的原始实现过程中使用的 VGG-16。