Today, the editor brings you an article. "Liu's Unwavering Commitment to Learning (22): List Comprehensions and Dictionary Comprehensions in Python"
2025年06月02日
Today, the editor brings you an article. "Liu's Unwavering Commitment to Learning (22): List Comprehensions and Dictionary Comprehensions in Python"
2025年06月02日
降维意味着我们在不丢失太多信息的情况下减少数据集中的特征数量,降维算法属于无监督学习的范畴,用未标记的数据训练算法。
尽管降维方法种类繁多,但它们都可以归为两大类:线性和非线性。
线性方法将数据从高维空间线性投影到低维空间(因此称为线性投影)。例子包括PCA和LDA。
非线性方法提供了一种执行非线性降维(NLDR)的方法。我们经常使用NLDR来发现原始数据的非线性结构。当原始数据不可线性分离时,NLDR很有用。在某些情况下,非线性降维也被称为流形学习。
2025年06月02日
摘 要: 为了克服非约束性变化条件下人脸识别率降低的弊端,提出一种曲率与小波轮廓增强的人脸识别算法。首先建立结构控制函数,通过水平集曲率检测人脸图像的整体结构,并建立融合轮廓分布模型,得到融合分布图像。然后用小波增强融合分布图像,得到轮廓和整体结构增强的图像,在此基础上,用主成分分析(PCA)算法对上述增强图像进行特征提取。最后通过稀疏表示(SRC)判断测试图像所属的类。实验结果表明,在ORL数据库的基础上,与PCA识别算法、SRC识别算法以及PCA与SRC相结合(PCA & SRC)的识别算法相比,该算法在非约束条件下识别率最高,鲁棒性得到增强。