醋醋百科网

Good Luck To You!

语义图像分割 解密谷歌DeepLab-v3+

谷歌的的语义图像分割(Semantic Image Segmentation)模型DeepLab-v3+已开源,而这一技术在Google Pixel 2和2XL手机(包括后续型号)上也得到应用。这项技术可以实现对图像或视频的背景分割,给图像和视频处理APP带来极大便利。今天就让我们来聊聊什么是语义图像分割,以及它的实现原理。

视频抠像,了解谷歌DeepLab-v3+技术

说到抠图,很多朋友想到的是PhotoShop,确实借助PS我们可以精确将人像从复杂的背景图中抠出来。但是如果要将人像从视频画面中“抠”出来,估计很多朋友就没听说过这项技术了。

堆叠解卷积网络实现图像语义分割顶尖效果

选自arXiv

机器之心编译

参与:路雪

本文介绍了一种堆叠解卷积网络(Stacked Deconvolutional Network),它可用于高效的图像语义分割。该方法堆叠多个浅层解卷积网络,采用层级监督帮助网络优化,在多个数据集上实现了顶尖效果。机器之心对该论文进行了介绍。

显著提升图像语义分割性能,滴滴携伯克利提出多源对抗域聚合网络

机器之心发布

机器之心编辑部

在深度学习的发展过程中,领域自适应和知识迁移受到越来越多研究者的关注。他们希望一个领域数据集中学习的知识可以迁移到新的领域中。针对这一目的,滴滴和加州大学伯克利分校的研究者提出一种新的多源领域自适应模型,该模型能够同时利用和学习多个不同源域的训练样本,进而显著提升了图像语义分割的性能。

随着深度学习的发展,研究者们希望深度学习模型不但可以从特定领域训练集中学习监督知识,更希望能够进行领域自适应(domain adaptation)和知识迁移技术(knowledge transfer techniques),将在一个领域数据集中学习的知识迁移到新的领域中。那么能否同时利用多个不同领域的训练样本,提高在新领域上的语义理解能力呢?

<< < 1 2 >>
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
最新留言