机器之心发布
北航刘祥龙教授团队、字节跳动 AI Lab智能语音团队
2025年07月07日
Keras是一个高层次的深度学习框架,它提供了一组简单易用的接口,能够快速构建和训练深度神经网络模型。在这里,我将介绍一些Keras的高级用法和技巧,以帮助你更加有效地使用这个框架。
Keras提供了一些常见的损失函数,如均方误差(MSE)和交叉熵(cross-entropy),但有时我们需要使用自定义的损失函数。Keras允许我们自定义损失函数,只需定义一个接受真实标签和预测标签的函数即可。例如,下面是一个自定义的Huber损失函数:
2025年07月07日
理解机器学习中的损失函数
损失函数是一种衡量模型与数据吻合程度的算法。损失函数测量实际测量值和预测值之间差距的一种方式。损失函数的值越高预测就越错误,损失函数值越低则预测越接近真实值。对每个单独的观测(数据点)计算损失函数。将所有损失函数(loss function)的值取平均值的函数称为代价函数(cost function),更简单的理解就是损失函数是针对单个样本的,而代价函数是针对所有样本的。
2025年07月07日
作为机器学习从业者,你需要知道概率分布相关的知识。这里有一份最常见的基本概率分布教程,大多数和使用 python 库进行深度学习有关。
概率分布概述
共轭意味着它有共轭分布的关系。
在贝叶斯概率论中,如果后验分布 p(θx)与先验概率分布 p(θ)在同一概率分布族中,则先验和后验称为共轭分布,先验称为似然函数的共轭先验。共轭先验维基百科在这里。