醋醋百科网

Good Luck To You!

计算CNN卷积神经网络中各层的参数数量「附代码」


每个对机器学习感兴趣的机器学习工程师/软件开发人员/学生都在卷积神经网络(也称为CNN)上工作。我们有一个一般理论,即如何训练网络对图像进行分类。但是,刚接触机器学习/神经网络的人们并不了解CNN如何精确地学习参数。

我们知道,在每个转换层中,网络都试图了解基本模式。例如:在第一层中,网络尝试学习图案和边缘。在第二层中,它尝试了解形状/颜色和其他内容。最后一层称为要素层/完全连接层尝试对图像进行分类。

深度|Matlab编程之——卷积神经网络CNN代码解析

DeepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoEncoder(堆栈SAE,卷积CAE)的作者是 RasmusBerg Palm。

今天给介绍deepLearnToolbox-master中的CNN部分。

DeepLearnToolbox-master中CNN内的函数:

调用关系为:

该模型使用了mnist的数字mnist_uint8.mat作为训练样本,作为cnn的一个使用样例,每个样本特征为一个28*28=的向量。

设计一个适合三维网格重建的卷积神经网络#AI#干货解读

普通的神经网络不适用于比较大的网格(因为参数会过多),而传统的卷积神经网络又没法应用在拥有不规则结构的三维网格上。因此,我们把传统的卷积神经网络加以改进,使其可以拓展到任意结构的网格上。和近年来出现的许多其他的网格(图)卷积神经网络相比,我们的网络能更好地重建全局和局部信息,拥有更强大的生成能力,并且支持所有诸如上下采样的传统卷积神经网络所拥有的操作。

仅凭一张照片就能生成3D人体模型(用照片生成3d人物)

来源:科技日报

仅凭一张照片就能生成3D人体模型

近日,重庆中科云从科技有限公司(以下简称云从科技)提出一种新型DenseBody框架,可直接从彩色照片中获取3D人体姿势和形状。而此基于单帧图像的3D人体重建技术,将原有最低误差降低30%,刷新了世界纪录。

获取人体3D数据不容易

用Emoji、zepeto等软件将自己的照片转换成3D动画头像的功能曾风靡一时,但很多人发现,其实生成的3D形象和自己并没有那么像。

传统3D重建技术大多需要连续的图像序列或是多视角的图像,在硬件设备上一般需要采用双目摄像机或者结构光摄像机等设备,因此在手机等便携设备上往往难以实现;另一方面,专用设备还会增加部署成本,增加大规模普及3D重建技术的难度。但基于单帧图像的3D重建技术对原始图像要求放松的同时,对背后的技术却提出了更高挑战。

通俗解释:作为大模型“大脑”的神经网络,背后是如何运行的?

大家都知道,大模型能处理人类的需求,但作为大模型“大脑”的神经网络,其背后的运行原理是什么?

下文给出大家都能理解的通俗易懂的讲解和例子,希望能帮助到您理解(大家都可以理解,不会有复杂的专业名词术语)。


简单的例子:神经网络如何识别手写数字?

假设有一个班级(神经网络),如何让学生们识别出一张手写数字呢?

机器学习: 卷积神经网络 (CNN)(卷积神经网络cnn模型)

卷积神经网络模型(CNN Model)

传统的人工神经网络(Artificial Neural Network)在图像处理中面临的主要问题是:

- 处理的数据量太大,导致成本很高,效率很低

- 参数太多,并且存在过度拟合

- 图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高

一文搞懂卷积神经网络(CNN)的原理(超详细)

卷积神经网络(Convolutional Neural Network,CNN)是一种在计算机视觉领域取得了巨大成功的深度学习模型。它们的设计灵感来自于生物学中的视觉系统,旨在模拟人类视觉处理的方式。在过去的几年中,CNN已经在图像识别、目标检测、图像生成和许多其他领域取得了显著的进展,成为了计算机视觉和深度学习研究的重要组成部分。

一、图像原理

卷积神经网络(CNN)最本质的技术(cnn卷积神经网络应用)

核心结构与技术原理

局部感知与参数共享CNN模拟了人类视觉系统的工作方式。人眼在观察物体时,会先聚焦局部细节(如边缘、纹理),再逐步整合为整体认知。CNN通过卷积层实现这一过程:使用小型滤波器(如3×3或5×5的窗口)在图像上滑动,每次只关注局部区域,提取边缘、角点等基础特征。参数共享是CNN的核心创新。传统神经网络中,每个神经元都有独立的权重参数,而CNN的卷积核在图像不同位置滑动时,参数保持不变。例如,一个3×3的卷积核在扫描整张图片时,始终使用同一组9个参数。这种设计大幅减少了参数量,使模型更轻量,同时增强了特征的位置不变性——即使物体在图像中平移,CNN仍能识别其特征。

HydraNet——特斯拉自动驾驶强大的人工智能神经网络模型

特斯拉的自动驾驶仪无疑是目前最先进的计算机视觉系统,从自动驾驶汽车最重要的功能,车道检测到行人跟踪,再到信号灯识别等等,它们必须涵盖所有道路信息,并预测每种情况。因此特斯拉发布了“ Tesla Vision ” 相机制成的感知系统,特斯拉的计算机视觉新系统只配备了8个摄像头……这种纯计算机视觉的应用,使其成为世界上唯一不使用雷达的自动驾驶公司之一!

从下面视频中,我们可以看到特斯拉的计算机视觉系统。车辆周围的 8 个摄像头(左,搜集车周围的影像)通过神经网络生成 3 维“向量空间”(右,生成最终的车道信息),代表自动驾驶所需的一切信息,如线条、边缘、路缘、交通标志、红绿灯、汽车;汽车的位置、方向、深度、速度等等信息,而这一些的实现,只是特斯拉上面的8个摄像头与自动驾驶系统来实现的。其中自动驾驶系统中,最重要的便是来训练处理8个摄像头采集到的影像信息的神经网络模型了。

卷积神经网络(CNN)详细介绍及其原理详解

来源:机器学习算法那些事

<< 1 >>
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
最新留言