2025年03月29日
df -i 100% 处理:
[root@iZ251u7jin4Z logs]# df -Th
Filesystem Type Size Used Avail Use% Mounted on
2025年03月29日
无人机+人工智能在建筑检测领域的应用越来越广泛,比如桥梁巡检、隧道检测、建筑立面病害识别等。要在这个方向发展,你可以从以下几个方面入手:
2025年03月29日
目标检测算法的性能比较与评估是计算机视觉领域的重要课题。随着深度学习技术的快速发展,目标检测算法在精度和速度上都有了显著提升。
在性能评估方面,常用的指标包括交并比(IoU)、精度(Precision)、召回率(Recall)、平均精度(AP)和平均精度均值(mAP)等。其中,IoU用于衡量预测边界框与真实边界框的重叠程度,是判断检测是否准确的关键指标。而AP和mAP则分别用于衡量某一类别和整个数据集上检测算法的精度性能。此外,F1-Score作为精度和召回率的调和平均数,也是评估分类问题的一个常用指标。
2025年03月29日
本文回顾了由微软研究人员开发的 Faster R-CNN 模型。Faster R-CNN 是一种用于物体检测的深度卷积网络,在用户看来,它是一个单一的、端到端的统一网络。该网络可以准确快速地预测不同物体的位置。为了真正理解 Faster R-CNN,我们还必须快速概述一下它所进化的网络,即 R-CNN 和 Fast R-CNN。
2025年03月28日
皮带是矿山生产中重要的输送设备,由于设备、环境等原因,皮带易发生跑偏,给企业带来经济损失与安全隐患。现有的皮带跑偏检测方法主要分为人工巡检法与机器视觉检测法。人工巡检存在漏检问题,对于长距离、复杂环境下的皮带跑偏检测并不适用。机器视觉检测法分为