醋醋百科网

Good Luck To You!

小目标检测顶会新思路!最新成果刷爆遥感SOTA,参数小了18倍

遥感领域的小目标检测一直是个具有挑战性和趣味性的研究方向,同时也是顶会顶刊的常客。但不得不说,今年关于遥感小目标检测的研究热情尤其高涨,已经出现了很多非常优秀的成果。

比如SuperYOLO方法,通过融合多模态数据并执行高分辨率的目标检测,在大幅提高遥感图像中小目标的检测准确性和速度的同时,参数减少了18倍。

再比如结合顶流Mamba和YOLOv9的SOAR,在精度和效率方面都达到了SOTA,性能直接起飞,实力证明遥感小目标检测

改进的YOLO:AF-FPN替换金字塔模块提升目标检测精度

深度学习模型大小与模型推理速度的探讨

作者丨田子宸@知乎(已授权)

改进的YOLOv5:AF-FPN替换金字塔模块提升目标检测精度

北大、字节跳动等利用增量学习提出超像素分割模型LNSNet

机器之心专栏

作者:朱磊、佘琪

利用持续学习中梯度缩放控制的方法,北大、北邮、字节跳动提出的新方法相比经典算法在参数量降低近 20 倍的同时,运算速度提升了 4 倍。

为解决在线学习所带来的灾难性遗忘问题,北大等研究机构提出了采用梯度调节模块(GRM),通过训练权重在特征重建时的作用效果及像素的空间位置先验,调节反向传播时各权重的梯度,以增强模型的记忆性的超像素分割模型 LNSNet。

膨胀卷积学习笔记

膨胀卷积 (Dilated Convolution,也称为空洞卷积),与标准的卷积核不同,膨胀卷积在 kernel 中增加了一些空洞,从而可以扩大模型的感受野。

1.膨胀卷积和标准卷积区别

我们先通过下图看一下膨胀卷积和标准卷积的区别,采用的卷积核都是 3×3 的。膨胀卷积有一个超参数 dilation rate,表示卷积核的间隔,标准卷积的 dilation rate 为 1,下图的膨胀卷积 dilation rate 为 2。

汇总|实时性语义分割算法(全)

作者:明泽Danny

来源:公众号|计算机视觉工坊(系投稿)

我们在上篇—

Few-shot Learning最新进展调研

小样本学习主要研究如何通过少量样本学习识别模型。目前学术界普遍研究的是N-way-K-shot问题,即进行N个类别的识别,每类有K个样本。训练过程以task为单位,会用到两个数据集:Support set S 和 Query set Q 。对于模型训练过程中的每个task(episode),选定M个class,每个class选择N个样本,这M x N个样本也称为support set。对于另一个从这M个class中选择的待预测样本,模型需要确定其属于哪个class,这类问题也称为M way N shot。在测试过程中,对于在训练集中从未见过的class,模型需要在M way N shot的模式下正确分类出样本的类别。常见的M和N的设置为:5 way 1 shot, 10 way 1 shot, 5 way 5 shot, 10 way 5 shot。

自动驾驶中多模态下的Freespace检测到底如何实现轻量化

作者 |

轻松学Pytorch-详解Conv2D卷积处理

Conv2D基本原理与相关函数

常见的图像卷积是二维卷积,而深度学习中Conv2D卷积是三维卷积,图示如下:

<< 1 2 > >>
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
最新留言